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Abstract. We study analytiully the switching process in excitonic optical bistabitily in a 
semiconductor neas the hysteresis limit points in the case of fully developed hysteresis. We 
consider four different time-dependent Input pulse shapes tkat induce switching: a single 
rectangular pulse. a single vivlgular pulse, a sequence of rectangular pulses and a sequence 
of triangular pulses. The dependence of the switching time on the characteristics of these inputs 
is analysed. 

1. Introduction 

Since the observation of optical bistability (OB) in GaAs [l] and InSb [Z], semiconductors 
have proved to be very good candidates for optically bistable devices. The most pronounced 
non-linearity in semiconductors is related to excitons whose binding energy is greatly 
enhanced by quantum confinement. Semiconductor quantum wells, quantum wires and 
quantum dots are thus of special interest with respect to practical devices. Furthermore, in 
excited semiconductors the photoabsorption may increase with increasing excitation density, 
leading to the appearance of the so-called intrinsic OB (see e.g. [3-6]) without any external 
feedback. Such an induced absorption mechanism makes experiment easier because the 
system can provide its own intrinsic feedback and one needs no special geometrical cavity 
configuration. This mechanism for intrinsic OB can thus be referred to as cavityless OB. 

When a bistable device is operated as a memory element, an important factor is the 
switching time, i.e. the time required for the field to jump between its two stable steady 
states. This switching time controls the duty cycle, which is one of the figures of merit of a 
bistable device. In general. switching times are different for different non-linear devices and 
depend on specific characteristics of the systems. To obtain absolute values of switching 
times, one has to carry out elaborate numerical calculations, which, however, do not yield 
qualitative properties about other devices. Analytic results are therefore desirable to get 
generic information on a wide class of devices. However, this can be done only in some 
asymptotic limits. For example, the authors of [71 were able to give analytic expressions 
for the switching times in absorptive OB in the limit of large bistability parameter C (this 
parameter is defined in [SI). Their results showed the dependence of the up-switching 
(down-switching) process on the atomic (cavity) relaxation time. However, an alternative 
study of switching was performed using a local analysis valid near the limit points [9], 
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in which the universal behaviour of a bistable device such as critical and/or non-critical 
slowing down could be theoretically predicted. 

In this paper we extend the approach of [9] to switching in a semiconductor whose 
bistability is due to exciton-exciton interactions. In this connection we note that in [9] it 
was possible to derive a single characteristic equation depending on a unique parameter in 
the vicinity of the limit points. In the semiconductor excitonic OB there are more material 
parameters besides the input control [lo]. Furthermore, two characteristic equations must 
be dealt with: one that describes the dependence of exciton density versus input pumping 
field, and the other that describes the dependence of photon density versus input pumping 
field [11,12]. These features make the problem more complicated. Nevertheless, as will be 
shown in detail, an analytic treatment of the switching process is still possible. This can be 
achieved in two steps. First, we apply a scaling to reduce the number of relevant parameters 
to two. Secondly, we use the local expansion procedure proposed in [9] after performing 
a coordinate translation, which i s  necessary to separate adequately the two stable output 
branches of the OB curve. 

We organize our paper as follows. In section 2, we model the semiconductor as an 
interacting exciton-photon system driven by an external coherent radiation field. Section 3 
deals with the steady-state bistability. Section 4 is divided into five subsections. In the first 
subsection we analyse the stability of the steady solution, whereas the subsequent subsections 
are devoted to the study of the system response to a single rectangular (triangular) pulse as 
well as to a sequence of rectangular (triangular) pulses. The last section is a conclusion. 

It should be stressed that our aim in this paper is not to obtain results valid for one 
specific semiconductor but rather to derive generic properties of the switching time and the 
switching mechanism that are independent of the precise nature of the underlying material 
considered. Thus the only explicit reference to semiconductor physics will be in section 2, 
where we derive the macroscopic equations from a bonajide microscopic Hamiltonian. The 
remaining sections are devoted to the analysis of the asymptotic time-dependent equations 
that describe the response of the medium to external pulses of different shapes. The material- 
independent solutions of these equations depend explicitly on the pulse characteristics. The 
motivation for considering switching by single and repeated pulses is l i e d  to the fact 
that the ultrashort-pulse technique is now progressing quite fast. Our analytic treatment is 
expected to provide a guide for the use of controlling pulses in devices. 

2. From Ule microscopic description to macroscopic equations 

Generally, excited semiconductors contain various types of quasiparticles (charge carriers, 
excitons, biexcitons, opticaYacoustic phonons, magnons, etc.) that interact with each other 
and with photons. This forms a genuine many-body quantum system. The electronic and 
optical properties of semiconductors must therefore be investigated at a microscopic level 
by taking into account the effects of damping and relaxation as well as the action of external 
fields [13]. However, even with such a powerful theoretical tool as the technique of non- 
equilibrium Green functions, it is not possible to solve the general semiconductor problem. 
Since we are concerned with excitonic OB, it is convenient to model the semiconductor 
as a quantum exciton-photon system. Even so, the model still faces the complexity 
connected with the non-bosonity of excitons, which are composite quasiparticles. Non- 
boson approaches to the many-exciton system have in fact been developed [14,15], but their 
application seems difficult owing to the trilinear commutation relations and the normalization 
properties. Hence we shall work in the boson formalism [ 161 in which excitons are regarded 
as ideal bosons. 
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Let the semiconductor be pumped by an external coherent pump field with wavevector 
k, frequency Qk and amplitude &k. Inside the semiconductor the light is described in the 
second quantization representation by the photon annihilation (creation) operator bt (bt). 
The photon-exciton matrix element and the exciton-exciton interaction are respectively 
denoted by g and f, which are assumed for simplicity to be k-independent. Considering 
only the coherent exciton, the model Hamiltonian can be formulated in the form [ 171 

H = Ekatak + akb:bk - g(a:bk f btak) f (1/v)  fak+U:UkUr -I- i(f&v)'/2 

x [&k exp(-iRkr)bk+ - E; exp(iStar)bk] (2.1) 

where the unit system used is ti = c = 1, v is the sample volume, and Uk (U:) is the 
annihilation (creation) operator of the coherent exciton with momentum k and energy 
4. This model Hamiltonian can be derived from the original electron4ole Coulomb 
Hamiltonian [ 161. The f coupling constant comprises several terms, which describe direct 
as well as exchange Coulomb interactions between the constituents of two excitons. The 
explicit dependence o f f  on momentum and spin has been obtained in [NI. The Heisenberg 
equations for the k mode of the exciton and the photon can be set up from (2.1): 

dak/dr = -i(Ek - iya)ak f igbk - (2i f/v)U:UkUk (2.2) 

(2.3) dbk/dr = -i(Qk - iyb)bk + igak f (nkV)"&keXp(-iPkT) 

where y. (yb) is the exciton (photon) transverse damping, which has been added 
phenomenologically. To study the macroscopic transient evolution we need to average 
(2.2) and (2.3) over the coherent state [I91 of the field to get the averages (ak(r))  and 
(bk(S)). Because the coherent state is the eigenstate of the annihilation operator, we can 
use the following factorization: 

(a:akak) = nk(ak) (2.4) 

where rzk 
equations for (ak(5)) and (bk(r)), i.e. 

I(ak)1*. With the aid of (2.4). we obtain from (2.2) and (2.3) a closed pair of 

d(a(r))/dr = -i(E + 2fp - iy,)(a(r)) + ig(b(r)) (2.5) 

d(b(r))/dr = -i(Q - iy,,)(b(r)) f ig(a(r)) + (SaV)'/2Ee-i". (2.6) 

In (2.5) and (2.6) and in the remainder of this paper we shall everywhen drop the index k 
for convenience. The parameter p is the density of the coherent exciton, p = V-'l(a(r))I2. 
Since the time dependence of the system is mostly imposed by the driving field, we can 
extract from (a(?)) and (b(7)) the slowly varying functions $,b(T) and &&(r): 

with the coefficients Qa = [yaV/(2f)]'/2 and Qb = Q,n/g. Setting the reference phase 
such that E is real, we can substitute (2.7). (2.8) into (2.5), (2.6) and introduce the scalings 

i = sy, 

D = (g/YJ2 

G = (Sa - E)/y, M = n/ya 
5 1/2 (2.9) 

P = gW!Jf/y, 1 
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to arrive at the following macroscopic set of non-linear differential equations for & b  and 
<d 

Nguyen Ea An and P Mandei 

dWd5 = -h - (G - e: - <:)<a - t b  

d<a/d? = -{a + (G - e: - <%=a 'r t b  

d<b/di = -M<b + Dea. 

(2.10) 

(2.11) 

(212) dtbb/d? = - h f t b  - D<a 'r P 

(213) 

In principle, the set (2.10) to (2.13) fully describes the dynamics of the system, including 
both regular and chaotic self-pulsations. Here, our aim is to investigate the switching 
dynamics in the case in which the system develops a steady hysteresis. To this end, it 
suffices to study the scaled exciton and photon numbers defined as 

Na = 5: + <,' Nb = (:+ <b.  2 (2.14) 

Making use of (2.10)4213) we can write the dynamical equations for Na and Nb in the 
form 

dN,/d? = -N, + I / [ ( N ,  - G)'+ E ]  

dNb/d? = -Nb + I [ ( N a  - G)* 'r l]/[(N, - G)'+ E ]  

(2.15) 

(2.16) 

with 

I = (P/M)' and E = (1 + D/M)' .  (2.17) 

It is worth noticing that, apart from the input control parameter I - P z  - EZ,  we have 
reduced the number of material parameters from six (E, S2, f, g, ya. ~.a) in equations (2.2) 
and (2.3) to three (G. M, D )  in (2.10)-(2.13) and then to two (G, E )  in (2.15) and (2.16) by 
the appropriate scalings (2.7)-(2.9) and (2.17). A further reduction to only one parameter 
will be discussed in the next section. 

3. Steady-state bistability 

In the steady regime we get from (2.15) and (2.16) 

I = N,[ (N ,  - G)'+ B ]  (3.1) 

Nb = Na[(Na - G)'+ I ] .  (3.2) 

For G > (3B)'Iz the curve N, = N , ( I )  given by (3.1) will be S-shaped as schematically 
illustrated in figure I@). This is the light-excitation density bistabilily. Since B > 1 
by the definition (2.17). the condition G > (3B)'D automatically yields G 5 J3, which 
means that the curve of N ,  = N,(Nb) given by (3.2) is also S-shaped. Because the output 
field is proportional to Nb, the curve Nb = N b ( l )  can be referred to as the output-input 
characteristic of the optical system and thus we shall be interested in the dependence of 
Nb on I rather than of N ,  on I. As has been shown in [20] and in more detail in [21]. 
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the corresponding shapes of the curve Nb = &(I)  may have very distinct topologies. For 
G >> (3B)’”, i.e. for large exciton detuning and small exciton transverse damping, the 
system will display a fully developed bistability with very large hysteresis. In such an 
asymptotic situation, it is useful to define a small parameter E = l /G .  We then have 
R = (3B/2)’/’ = O(1). In the next section we shall see that the parameter R can be 
absorbed in a new scaling so that E will remain the only parameter of the problem. The key 
assumption of fully developed bistability leaves us with a parameter E in terms of which 
all others will be expanded. For instance, the intensity of the limit points labelled 2 and 3 
on figure I(Q) are 12 = 4 / ( 3 ~ ) ~  + O(e-l) and I3 = 2R2/(36) + O(E).  When I = 12, the 
value of Na at the limit point is No2 = 1/(36) + R%/3 + Of$), while the corresponding 
value of Na on the upper branch is Na4 = 4 / ( 3 ~ )  + O(E). Similarly, when I = 13, we 
have Na = 1 / ~  - R%/3 + O(e3) and N.1 = 2R26/3 + O(c3). A similar analysis can 
be performed to estimate the leading contribution to Nb at the four special points of the 

Nw = 4 / ( 3 ~ ) ~  - 4(2R2/3 - 3) / (36)  + O(E). For the other limit point, at 13, we have 
curve Nb = &(I). For I = 12, we have Nbz = 4/(3E)’ - (2R2/3 - 1)/(3~) 4- o(t) and 

Nb3 = I /€  + O(E) and Nbi = 2R2/(3<) + O(E). 

Figure 1. Schematic dependence 
of ( U )  the scaled exciton number 
N, and (b) the scaled photon 
number Nb versus the scaled 
input intensity I in the limit of 
fully developed bistability. 

4. Analytic local treatment around the limit points 

As demonstrated in [9], a local analysis works well when the vicinity of a limit point (point 
2 or point 3 in figure I )  is far from the third steady branch corresponding to the same input 
intensity (point 4 or point 1 in figure 1). Taking into acmunt the asymptotic expansion 
determined in the previous section, we see that the coordinates of point 1 and point 3 in 
figure l(b) have the same dominant order of magnitude in E. This is also true for point 2 
and point 4. This fact prevents the direct scaling procedure made in [9]. However, if we 
first translate the origin of the coordinate system to the limit point 3 in figure l (b) .  then 
the distance from point 1 to the new origin is given by ( E  - l ) / ~ ,  which is a very large 
positive value. The same large distance from the origin holds for points 2 and 4. Thus, by 
the translation of the coordinate system we can again consider the third steady branch as 
located at a large distance of order O(6-l) from the limit point. For definiteness we shall 
present a detailed local analysis only around point 3. A similar treatment can also be done 
in the vicinity of point 2. 

Translating the origin of the coordinate system to point 3 and considering only the 
vicinity of this point means that we introduce the new O(1) variables y, t and p through: 

Nu = Nd + C Y  + O ( t 2 )  (4.1) 
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Nb = Nb3 - E Z  + O(E') 

1 = 13 + Ep + O(E2) 

(4.2) 

(4.3) 

with Na3, Nhs and 13 being the solutions of the steady-state equations (3.1) and (3.2). 
Inserting (4.1), (4.2) and (4.3) into (2.15), (2.16) and using the expansions of Na, Nb3 and 
r3 obtained in the previous section, we have derived to dominant order in E the following 
dynamical equations for the new variables: 

(4.4) 

(4.5) 

dy/dt = p - yz 

dz/dt = - p  + yZ - B(Y f Z) 

where t = i / B .  Equations (4.4) and (4.5) can be combined to give: 

d(y + z)/d? = -(Y + Z) (4.6) 

which yields 

z(i) = -y(t) + [y(0) + z(O)le-'. (4.7) 

No essential feature of the problem will he lost if we choose y(0) + z(0) = 0. Then the 
sum y + z is an invariant of the motion, which will simplify the analytic study of (4.4) and 
(4.5). 

4.1. Stability of the steady solution 

From (4.4) and (4.5) it follows that the steady solutions are of the form 

z* = ip. (4.8) 

The vicinity of point 3 in figure I(b) is replaced by a parabola emerging from the origin in 
the (p. z )  plane. We shall call z+ ( z - )  the u p p  (lower) branch of the asymptotic parabola, 
which in fact corresponds to the middle (lower) branch 3-2 (3-4) of the global histability 
curve represented in figure I@). For a constant input p the timedependent solution of (4.4) 
and (4.5) is 

(4.9) 

If the system is initially near the upper steady branch q, i.e. z(0) = q +(I! with 
equation (4.9) becomes 

g 1, 

(4.10) 

If LY = 0, equation (4.10) gives 

z ( t )  = z+. (4.1 1) 

If (I! c 0 the denominator of (4.10) remains always positive but its numerator may vanish 
at t = I ,  with 

ti = (l/z+)mh-'[(z+ +(I!)/z+~. (4.12) 
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For t > ti. the function tanh(t) tends to unity and z ( t )  tends to -z+ = z-. That means 
that the system being initially near but below (a < 0) to the upper branch (z+) relaxes to 
the lower branch (z-). The relaxation time depends on a. Larger la1 will result in faster 
relaxation. However, if a z 0 the numerator of (4.10) is always positive but its denominator 
vanishes at t = tz with 

tz = (l/z+)tanh-'[z+/(z+ +a)]. (4.13) 

When t varies from zero to rz, the denominator of (4.10) varies from z+ to 0 and hence z(t) 
tends to +CO. Since in our local model the third steady branch of the global curve (branch 
1-2 in figure I(b)) lies at infinity, the divergence of z(t) means the jump to the thiid branch 
when a > 0. Equation (4.13) shows that the jump time tz  will be shorter for larger a. The 
solution of (4.4) and (4.5) after tz is physically irrelevant within the local model. These 
results imply that the upper branch z+ is unstable and the lower branch z- is stable. This 
will also be true for the corresponding branches of the global curves, i.e. the middle branch 
3-2 is unstable and the lower branch 3-4 is stable, at least near the limit point. 

4.2. Switching by a rectangular pulse 

We consider now the response of our system to several kinds of input control fields that 
vary in time and determine their influence on the switching properties of the device. In 
this subsection we consider the input control in the form of a single rectangular pulse. 
Suppose that f = 0 the system is kept near the limit point 3 on the stable lower branch 
corresponding to a holding intensity po > 0, i.e. = z(0) = -po . A rectangular pulse of 
amplitude A and duration T is added to the holding intensity PO as schematically illustrated 
in figure Z(a). This physical problem is mathematically formulated as the solution of (4.4) 
and (4.5) with the time-dependent p = p(t), 

I / Z  

PO for t < 0 

for T < t 
and with the initial condition 

ZQ = z(0) = - p y .  

The solution is 

where 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

For a given pulse amplitude A =. po, it is easy to verify that zi(t) increases with increasing 
t while zz as a function o f t  - T increases (decreases) with increasing t - T if z l (T)  > p;" 
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i A 

I 

Po p 
Figure 2. Loul two-bmch system under the action of ( U )  a single rectangular pulse, (b )  a 
single triangular pulse. (c) a sequence of rectangular pulses and ( d )  a sequence of triangular 
pulses. The upper long-darhed (lower solid) branch represents the unstable (stable) smdy state 
z+ (LL), Vertical short-dashed lines show the holding intensity PO corresponding Lo the initial 
stale a. 

(if z1 (T) < p;''). Therefore, there must exist a critical pulse duration that separates the 
two time regions with very different dynamical behaviour. Denoting this critical duration 
by it is determined by the implicit equation 

112 (4.19) 

Physically, the system behaviour is understood as follows. When T < T, the system 
first follows the solution ZI until the pulse is over. After that it must return via z2 to its 
initial state (see figure 3(a), CUNS with numbers 3 and 6). No jump occurs in this case. 
When T = Tc the system has enough time to arrive at the other steady solution z = pi'* 

z l ( T , ) = P ,  . 
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but then stays there because it is a solution of the problem (figure 3(a), curve with number 
8.5446). When T > Z the system is able to cross the upper branch before the pulse ends. 
Hence, after the end of the pulse, the system follows a to infinity because now is an 
increasing function of time (figure 3(a), curve with number 9). This models the dynamics 
of a jump. When T is much greater than Tc the jump may take place in a very short time 
because in this case the system can switch up during part of the pulse action (figure 3(a), 
curve with number 11). Let us try to get some insight into the nature of slowing down near 
T,. From (4.19) and (4.17), Tc is explicitly given by 

'('4 a) I I  I 

(4.20) 

-0.5 -0.5 
t t 

F i y r e  3. Time evolution under B single rectangular pulse and the holding intensity po = 0.1. 
(a )  A = 0.15, T, = 8.5446. Values of T are indicated near each curve. Nonsritical slowing 
down is shown by the curves wilh T = 8.5447, 8.5446 and 8.5445. (b)  T = 6. A, = 0.179 11 .  
Values of A are indicated new each curve. Non-critical slowing down is shown by the CUNS 

wilh A=0.17912,0.17911 and0.17910. 

As to the switching time, Ts, it is the time needed for the system to diverge. ?he explicit 
expression for T, is (T > T,) 

1 
T , = T +  

( A  - PO)]/' A - P O  

For T c Tc it is natural to introduce the relaxation time, i.e. the time it takes for the system 
after failing to make a jump to come back to its initial state. For simplicity, we define a 
relaxation time only when z ( T )  z 0. The relaxation time. TR, can then be defined when 
T c Tc as the time needed to decay from z (T)  down to z(I) = 0 

(4.22) 

From (4.20) and (4.21) we see that both Tc and T, diverge as I / (A  - PO)'/' when 
A -+ PO. This divergence is a manifestation of critical slowing down, which is a universal 
phenomenon always occurring in the vicinity of a critical point [9,22]. However, there may 
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arise another type of slowing down that is not associated with the vicinity of the critical 
points. In fact, even for A - po = O(1) but T = Tc i A2 (A << 1) the switching and the 
relaxation times diverge logarithmically. When T = Tc + A’ the logarithmic divergence 
appears in T. (figure 3(a), curve with number 8.5447): 

Nguyen Ba An and P Mandel 

Y 1n(2pA”/p) (4.23) 

where 

j3 = AA’/(l + [po/(A - po)I”’tan[Tc(A - po)’/*I) << 1 (4.24) 

and when T = T, - A’ this divergence affects ‘7, (figure 3(a). curve with number 8.5445): 

TR Y 1n(2p;/‘/p) (4.25) 

with @ given by (4.24). The slowing down governed by (4.23) and (4.25) is called non- 
critical slowing down and the first quantitative experimental observation was reported in 
WI. 

An alternative way to control the dynamical switching is to keep the pulse duration 
fixed and alter its amplitude. It can be proved that for a given T there exists a critical 
amplitude A,, which is determined by the implicit equation 

(4.26) 

such that when A > A, (A e A,) the switching is possible (impossible). In figure 3(b) 
we display the time evolution of the system when T = 6. The corresponding pulse critical 
amplitude is given by A, = 0.179 11. It is clearly seen that only pulses with A A, are 
able to switch up the system. Non-critical slowing down also occurs when A is near A, 
(see figure 3(b), curves with A = 0.179 12.0.179 11 and 0.179 10). Quite interestingly, our 
figure 3(b) resembles very much the experimental data of a Schmitt trigger circuit and of the 
sodium experiments reported in [24]. Although our paper deals with semiconductors, this 
resemblance is reasonable since after making an adequate scaling of the physical parameters, 
we are left with a generic problem, which is the dynamics in the vicinity of a limit point 
The difference, however, is that here we have to deal with a pair of equations, while in the 
previously reported cases a single equation was sufficient to characterize the local dynamics 
in the vicinity of the limit point. 

Summing up the results obtained so far we see that, for the realization of a switching 
process, a smaller pulse amplitude requires a longer pulse duration and, vice versa, a shorter 
pulse duration needs a larger pulse amplitude. Such remarks express the role of the pulse 
area. However, the analytic dependence on the pulse area can be derived only in a particular 
case when the system is initially very near the limit point [25]. The relations between the 
critical pulse duration Tc (amplitude A,) and its amplitude A (duration T) are drawn in 
figure 4 as a function of PO. The figures show that for a given amplitude A (duration 
T) the corresponding critical duration T, (amplitude A,) should be shorter (smaller) if the 
system is nearer to the limit point, i.e. if PO is smaller. In the limit of vanishing PO, i.e. 
po = 6’ <( 1, equation (4.26) yields, to dominant order in 6, (AT), = ACT = 26. In other 
words, in this limit all that matters is the product of A and T, i.e. the pulse area, rather 
than the characteristics of each pulse separately. 
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24 

12 

0.01 
0.0 

A T 

Figure 4. ( U )  Critical pulse duntion & versus pulse amplibde A for various values of Ihe 
holding intensily pu (indicated near each curve). (b) Similar dependence but of critical pulr;e 
amplibde A, Venus its duration T. 

4.3. Switching by a triangular pulse 

This subsection deals with the switching under the action of a single triangular pulse (see 
figure 2(b)). The motivation to consider such a kind of pulse is that experiments are 
traditionally carried out by sweeping the control parameter slowly across the critical region 
to allow the system to follow adiabatically the steady state. The two characteristics of this 
pulse are the sweep rate U and the duration T of the sweep. As shown in [9], such a problem 
can be solved analytically in terms of the Airy functions. The solution of (4.4) and (4.5) 
with the initial condition (4.15) and the sweep control parameter p = p ( t )  

for t < 0 
for 0 < t < T 
for T < t 

- ut 

can again be written in the form (4.16) but with z l ( t )  being defined by 

where 

and q is determined by the initial condition, 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

In (4.28) and (4.30) Ai, Bi and Ai‘, Bi’ are the Airy functions and their derivatives [26].  
To control the dynamics of switching, one may either fix the sweep duration and change 
the sweep rate or keep the sweep rate unchanged but adjust the duration of sweep. For a 
fixed sweep duration T, the sweep rate must be large enough to cause a switching. Thus 
there will exist a critical sweep rate, U,, dependent on both T and po. which separates the 
domain of switching from the domain of decay back to the lower state. Since z z ( t )  is the 
same as in the case of a rectangular pulse, we can immediately determine U, by the implicit 
formula 

(4.31) 
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(4.32) 

The time evolution is now represented by a parametric plot in the zp plane,(figure 5(a)) 
because we want to compare the static and the dynamic solutions. As seen from figure 5(a), 
the slower the sweep rate the closer the time-dependent trajectory remains near the steady 
stable state curve, which is the (lower) long-dashed curve. In the limit of U << 1 and when 
ut < po the argument of the Airy functions becomes very large and positive. Then these 
special functions have a dominant exponential decay and to dominant order in U we have 

Z l ( t )  = -uI/3,y1/2 = -(Po - u p  = - [p( t ) ]”Z.  (4.33) 

Comparing this result with (4.8), it confirms that for a very slow sweep the system indeed 
follows adiabatically the lower steady stable state but only as long as it remains far from the 
limit point. In general, (4.28) is valid for arbitrary U, T, po and t ,  and the system follows its 
own time-dependent trajectory as shown in figure 5(a). For increasing time z grows in the 
direction indicated by the arrows. Curve 3 in the figure corresponds to U = uc = 0.008 873 
for T = 20. At t = T, the sweep stops exactly on the upper steady state pA‘* where 
it remains in the absence of perturbations that would destabilize it. For U < U, there is 
relaxation back to the initial state (curves 1 and 2). For U > U, the switching takes place in 
a finite time T, > T after the sweep is finished (curves 4 and 5) or even in a time shorter 
than T ,  if the sweep rate is very high (curve 6). In figure 5(b) we trace the timedependent 
trajectories when U is kept constant. U = 0.01 and T varies. The critical sweep duration is 
T, = 18.3205. 

A 
I , ”  L I 

2 0 :  

1 .o 

0.3 

P I 

Figure 5. Timedependent a m l o r  in the ( z .  p) plane in the m e  ofsweep by asingle uiangular 
pulse, for pi) = 0.1. ( 0 )  T = 20. Curves I ,  2, 3, 4, 5 and 6 correspond to U = 0.006, 0.008, 
0.008873 (= uc), 0.0095, 0.010 and 0.011, respectively. (b )  U = 0.01. Curves I ,  2, 3. 4, 5 
and 6 correspond IO T = I2 16.5. 18.3205 (= Z), 19.3. 19.7 and 20, respectively. In both 
(a) and (b)  fhe mows indicae lhe time-evolution direction. The upper shon-dashed (lower 
long-dashed) branch of the panbola is the steady unstable (stable) state. 
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4.4. Switching by a sequence of rectangular pulses 

In practice, pulses with too large amplitude and too long duration cause a non-negligible 
heating of the device that may obscure or even quench the desirable optical effect. This 
is particularly important for those effects originating from excitons, because the binding 
energy of the latter is small and thus they could be destroyed by means of heat. The 
thermal gradient induced by the input power might also reduce the performance of the 
device. A possible alternative to control the system is to apply a sequence of pulses, each 
of which has relatively small amplitude and short duration. As will be shown in this and in 
the next subsection, a sequence of pulses may induce switching in somewhat longer time 
but with less sample heating. In this subsection, we deal with a sequence of rectangular 
pulses (figure 2(c)).  Each pulse has an amplitude A and an 'action duration' TI.  They are 
separated in time by TZ (the 'out-of-action duration'). We now have three parameters to 
control: A,  2'1 and Tz. For TZ >> TI the pulse sequence will act like a single pulse with 
amplitude A and duration TI. Of interest is the situation when TZ is comparable with or less 
than 7'1. It turns out that, even in this case, the problem can be solved exactly for arbitrary 
A,  TI and Tz. The solution is written in the form: 

ZI ( t )  for 0 < t < TI 
ZZ(t) 

Z3(f) 

for r, < t 6 TI + TZ 
for TI + T2 < f < 2Tl + T2 z(t) = I ... (4.34) 

wherezzn-~(t) isthesolutioninthetimeinterval(n-l)(T]+Tz) < t < (n-I)(Tl+Tz)+T1. 
while the time interval forz%(t) isn(Tl+Tz)-Tz 4 t 6 n(C+E). Theanalyticexpressions 
for z k - ] ( t )  and z.tt(t) are 

z&-l(t) = !IzZ,-d(n - 1)(TI + Tdl + (A - pd/'tant[t - (n -  VI + T 2 N A  - P O ) ' / ~ J ~ ~  

x U1 - [ M A  - p ~ ) l ' / ~ z ~ - ~ [ ( n  - 1)(Z + T2)I 

x tanw - (n  - I)(TI + TdKA -PO) in (4.35) 

(4.36) 

112 - I  

zz.-l[nT~ + (n  - 1)TzI + ~:'~tanh[[l - nT1 - (n  - 1)Tzlpi'J 
1 - (I/po)1/2zz.-I[nTI + (n  - 1)Tzl tanhKt - nTr - ( n  - 1)TzIp~'J 

Z2n(t) = 

with z(0). In figure 6(a)  we illustrate z as a function off  for po = 0.1, A = 0.15, 
TI = 4 and Tz = 2. We have on purpose chosen TI = 4, which is much less than the 
critical pulse duration Tc = 8.5445 corresponding to A = 0.15 in the case of a single pulse 
(see figure 3(a)). As seen from figure 6(a) ,  a switching is eventually possible even for 
such a small value of TI, This is in clear contrast with the action of a single pulse. In 
fact the system will require a longer time to make an actual jump. It first has to undergo 
a quite long zig-zag path before the actual switching occurs. The zig-zag time evolution 
of figure 6(a)  looks very much like that observed by the experimental mesurement in the 
Schmitt trigger circuit and also like that obtained by an approximated analytical solution 
of a switching process operated under a periodically modulated input control (see [27]). In 
order to emphasize the relative role of TI and TZ we represent in figures 6(b)  and (c) the 
evolution of z(t)  with different relations between Z and E .  Figure 6(b) is a plot with the 
const&t TZ = 1 but TI = 4, 5 and 7 .  In figure 6(c)  instead, TI = 4 and Tz = I ,  1.5 and 
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-0.0 

-0.5 

0.4 

-0.5 -0.5 *) .1 - .o 

-0.5 

Figure 6. Switching by a sequence of rectangular 
pulses. for pa = 0.1. A = 0.15. (a )  TI = 4, Tz = 2. 
The switching eventually occurs &et a long ng-zag 
evolution. (b )  Tz = I ,  TI = 4. 5 and 7 (values of fi  
are indicafd near each curve). (e) TI = 4, Tz = 1, I .5 
and 2 (values of Tz are near each curve). 

-0.5 - .1 * - .o 
Figure I. Switching by a sequence of friangular pulses 
presented as a pmrnehic plot in fhe ( z ,  p )  plane, for 
pa = 0.1 and U = 0.01, (a) TI = 18. Tz = 0.2, (b) 
TI = 18, Tz = 0.8 and (e) Ti = 17.8, Tz = 0.2. Ln 
(a), (6) and (c) the m w s  indicate fhe the-evolution 
direction. The steady states are also represented as in 
figure 5. 

2. These figures indicate that the switching will be faster for longer TI andlor shorter T, as 
intuitively expected. Our results provide a basis to evaluate these effects qualitatively. 

Let us again note that the idea of using periodic control inputs might be of interest in 
applications for at least two reasons. First, it requires relatively small amplitude and short 
action duration of each pulse. Secondly, it reduces effects connected with thermal gradients 
because the average power of a periodic input is constant. The latter aspect is especially 
relevant for integrated devices. 

4.5. Switching by a sequence of triangular pulses 

We now extend the analysis of section 4.3 to a sequence of triangular pulses. Obviously 
from figure 2(d) the pulse sequence that has the shape of a saw is characerized by three 



Optical bistability in semiconductors 4465 

parameters: the sweep rate U, the action duration Z and the out-of-action duration T2. 
Mathematically, this pulse sequence depends on time as: 

for t < 0 

I PO for  TI + Tz) - Tz 6 t 6  TI + Td 
where n = 1, 2, 3, . . .. Once more the action of such a time-dependent control input (4.37) 
together with the initial condition (4.15) leads to dynamical equations that can be solved 
exactly. Their solutions can be expressed as in (4.34) but with different z%-l(t). After 
making the appropriate change of variables 

t + p. = [po - u[ t  - (n - I)(TI + ~z)I)w-~’~ (4.38) 

we derive the following formula for ZZ,-I: 

which is formally similar to (4.28) but with a different definition of w., 

~‘/~Ai‘(rp) - z%-z[(n -  TI + Tz)lAi((p) 
~‘/~Bi’(rp) - z&-z[(n -  TI + TdIBi((p) 

U“ = - 

(4.39) 

(4.40) 

where rp = po u-*l3 and z(0). With similar physics as in the previous case we 
can expect that the switching will be more favourable for longer action duration TI and/or 
shorter out-of-action duration Tz. This is confirmed graphically from figures 7(a), (b) and 
(c). which are plotted in the zp plane for the same U = 0.01 but different TI and E .  

5. Conclusion 

In conclusion, we have performed a local treatment of the switching process in excitonic 
optical bistability in semiconductors under the action of several kinds of time-dependent 
control inputs. The only asymptotic assumption is that of fully developed bistability, 
which makes it possible to expand the physical variables near the limit points in power 
series of a small parameter E. This parameter is inversely proportional to the difference 
between the input field frequency and the excitonic frequency scaled to the exciton transverse 
damping. In typical semiconductors, the exciton transverse damping is about 1 meV while 
its binding energy ranges from some tens to some hundreds of meV (for instance, it is 
33 meV for CdS and 200 meV for CuCl). Then one can choose the exciton detuning of 
10 to 100 meV to observe OB. Such situations satisfy our asymptotic assumption on the 
smallness of E. All the results have been obtained in terms of closed analytical expressions 
that allow one to understand easily the dynamics of the switching. The macroscopic non- 
linear differential equations (2.10)<2.13) have been derived from first principles based 
on a microscopic model taking into account the elementary interactions between photons, 
excitons and the driving field. A numerical simulation of the evolution equations (to be 
reported in a separate publication) has also shown that these differential equations can 
display complex dynamics including periodic and chaotic solutions. We therefore hope that 
such spontaneously pulsating solutions as well as their corresponding bifurcation diagrams 
could also be described analytically using a local approach. Such work is currently in 
preparation. 
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